Baltic Sea - Bathing Water Quality

Gerald Schernewski

Leibniz-Institute for Baltic Sea Research, Warnemünde, Germany Klaipeda University, Lithuania

Overview

- 1. Background & legal framework
- 2. State in Europe & the Baltic
- 3. Case studies problems & hot spots
- 4. New challenges & climate change
- 5. Conclusions

Bathing waters are all surface waters in which bathing is explicitly authorized or not prohibited and traditionally practiced (76/160/EEC).

1. Hazards: Causes and sources of bathing illness

Agent	Illness	Probable Source	Transmission Pathway	
Campylobacter spp. Gastroenteritis, fever		Human and animals	Ingestion	
Enteropathogenic E. coli	Bloody diarrhea, abdominal cramp	Human and animals	Ingestion	
Helicobacter pylori	Gastritis, abdominal pain	Human and animals	Ingestion	
Legionella spp.	Pneumonia, gastroenteritis	Natural	Inhalation	
Leptospira spp.	Fever, headache, vomiting, jaundice	Natural and animals	Ingestion	
Salmonella spp.	Gastroenteritis, fever, pain	Human and animals	Ingestion	
Mycobacterium avium	Respiratory disease	Natural	Inhalation/contact	
Vibrio vulnificus	Infection in pre-existed open wound	Natural	Wound infection	
Shigella spp.	Bacillary dysentery, abdominal pain	Human	Ingestion	
Adenovirus	Gastroenteritis, respiratory disease	Human	Ingestion, inhalation	
Noroviruses	Gastroenteritis		_	
Rotaviruses	Gastroenteritis	Human & animal	Ingestion is the	
Coxsackievirus	Mild febrile illness to myocarditis	are the	major pathway	
Enteroviruses	Central nervous system, ocular and respiratory infections	dominating source	Ingestion	
Echovirus	Diarrhea, secretions from the eyes or throat	Human	Ingestion	
Hepatitis A virus	Liver disease	Human	Ingestion	
Hepatitis E virus	Liver disease	Human and animals	Ingestion	
Cryptosporidium	Diarrhea, abdominal pain, fever	Human and animals	Ingestion	
Giardia	Diarrhea, abdominal cramp	Human and animals	Ingestion	
Microsporidia	GI illness, diarrhea	Human and animals	Ingestion	
Naegeria fowleri	Meningoencephalitis	Natural	Contact	
Schistosoma spp.	GI illness, haematuria	Human	Ingestion, Contact	
Entamoeba histolytica	Amoebic dysentery	Human	Ingestion	

Tiwari et al. (2021). Int. J. Environ. Res. Public Health 18, 5513

1. Souces of hazards

The most common hazards in recreational waters are microbial pathogens introduced by faecal contamination from humans and animals (WHO, 2021).

Sources of faecal contamination can include:

- discharges from wastewater treatment plants, sewer and septic tank breaks or overflows, open drains, and urban stormwater;
 Settlements
- excreta from livestock animals, birds and dogs at the water use site or transported by runoff;
 Agriculture
- direct contamination from recreational water users or local beach toilet facilities;
- ➤ faecal waste disposal from boats.

1. Faecal pathogens in raw sewage

- Escherichia coli (E.coli) and intestinal enterococci, are common intestine bacteria.
- Outside the body they usually survive only a few days.
- Therefore, they can serve as indicators for faecal contamination in the aquatic environment.

	Pathogen/indicator organism	Disease or role	Microbes/L
n	Viruses		
_	Adenoviruses	Respiratory disease, gastroenteri-tis	10 ² -10 ⁹ GC
	Astrovirus	Gastroenteritis	10 ³ -10 ⁷ GC
	Hepatitis A virus	Hepatitis	Undetected to 10 ⁹ GC
	Hepatitis E virus	Hepatitis	Undetected to 10 ⁵ GC
Viruses	lorovirus (and other caliciviruses) Diarrhoea, vomiting		10 ² -10 ⁹ GC
	Enterovirus Poliomyelitis, mild febrile illness, myocarditis, meningitis		Undetected to 10 ⁴ (cell culture)
	Rotavirus	Rotavirus Diarrhoea, vomiting	
	F+ coliphages	Indicator organism	10 ⁵ -10 ⁷ PFU
	Somatic coliphages	Indicator organism	10 ⁶ -10 ⁸ PFU
	Bacteria		
	Campylobacter spp.	Gastroenteritis	10 ³ -10 ⁶ MPN 10 ⁶ GC
	Escherichia coli	Indicator organism (except specific pathogenic strains ^a)	107-108 CFU or MPN
Bacteria	Intestinal enterococci	Indicator organism	10 ⁶ -10 ⁷ CFU or MPN
	Salmonella spp.	Gastroenteritis	Up to 10 ⁵ MPN
	Shigella spp.	Bacillary dysentery	10 ² -10 ⁸ MPN
	Vibrios such as Vibrio cholerae, V. parahaemolyticus and V. vulnificus	Gastroenteritis	<10-10 ⁵ MPN
	Parasitic protozoa ^c		
rotozoa	Cryptosporidium spp.	Diarrhoea	10-10 ⁴ oocysts
1010208	Entamoeba histolytica	Amoebic dysentery	Undetected to 100 cysts
	Giardia duodenalis	Diarrhoea	10–10 ⁵ cysts
	Helminths ^b		
	Ascaris spp.	Ascariasis	5-450 ova
arasites	Ancylostoma spp. and Necator sp.	Anaemia	5–190 ova
	Trichuris spp.	Diarrhoea	10-40 ova
uidelines on			6

WHO (2021): Guidelines on recreational water quality

CFU: colony forming unit; GC: gene copies; MPN: most probable number; PFU: plaque forming unit.

1. Bathing Water Quality indicators: *E. coli* & enterococci

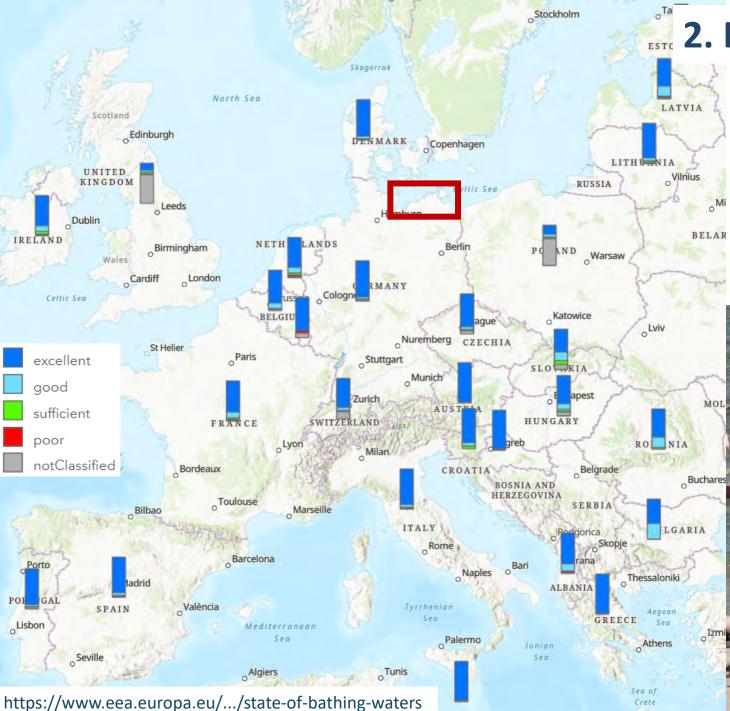
- Both show high concentrations in sewage (~10⁷ Colony Forming Units/liter).
- Both are relatively easy to detect.
- > Enterococci are a subgroup of faecal streptococci.
- The survival in nature depends on environmental factors. Enterococci survive longer in aquatic environments than *E. coli*.
- The ratio between both indicates how old a pollution is and enables a back-tracking to the emission spot.
- Both are usually harmless.

E. coli 0157

Emerged in Europe in the 1990's and can cause severe, potentially life-threatening, illness (Coia, 1998).

1. The European Bathing Water Directive (2006)

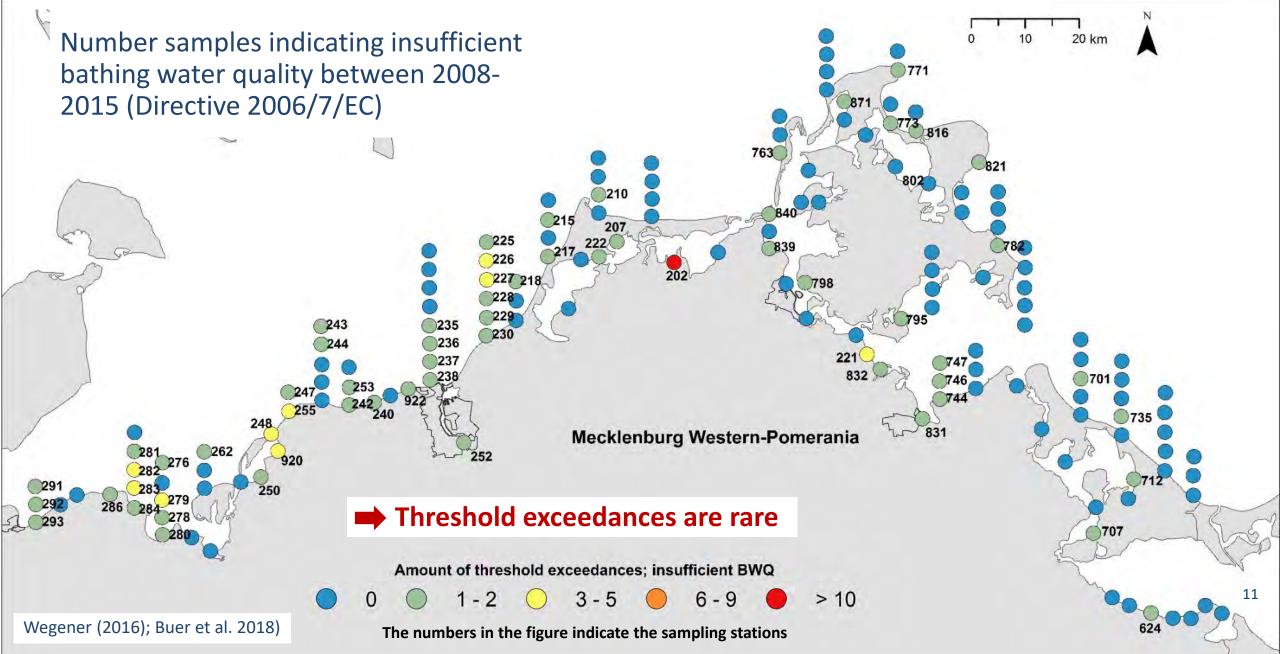
Directive	Indicator (colony forming unit, CFU)			
76/160/EEC	Total coliforms (CFU/100 ml)			
76/160/EEC	Faecal coliforms (CFU/100 ml)			
2006/7/EC <i>E. coli</i> (CFU/100 ml)				
2006/7/EC	Intestinal enterococci (CFU/100 ml)			


1. The European Bathing Water Directive (2006): Indicator thresholds

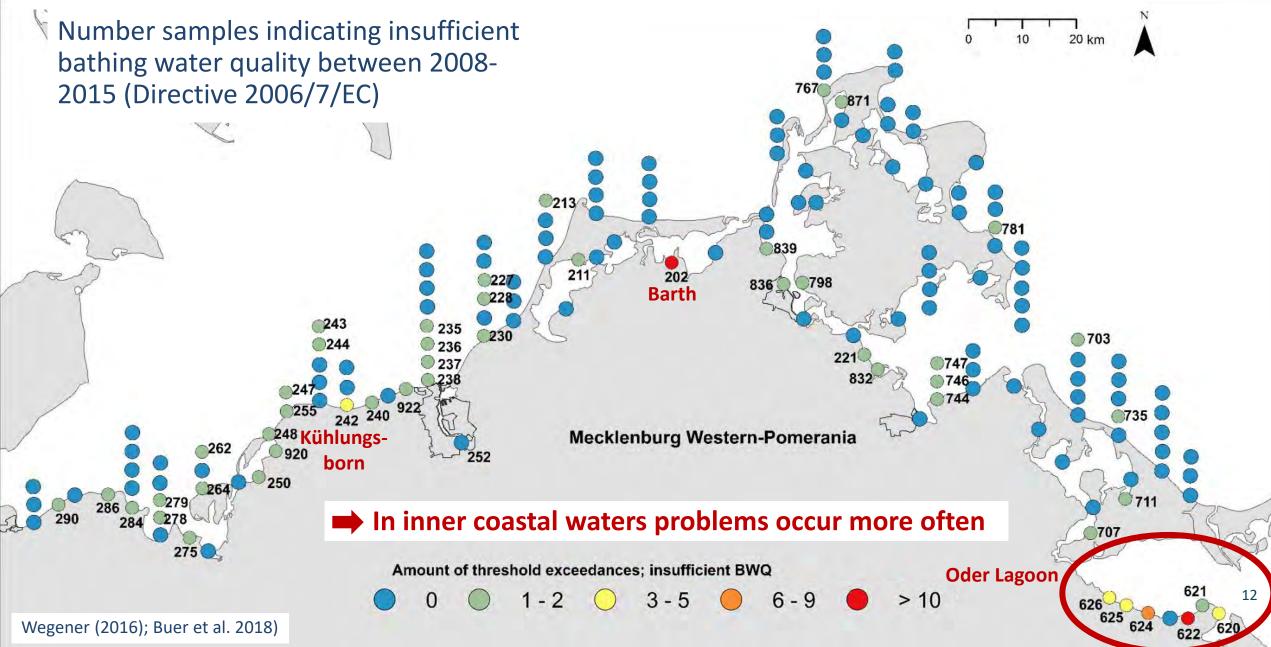
The Directive (2006) has more specific indicators and stricter thresholds, but...

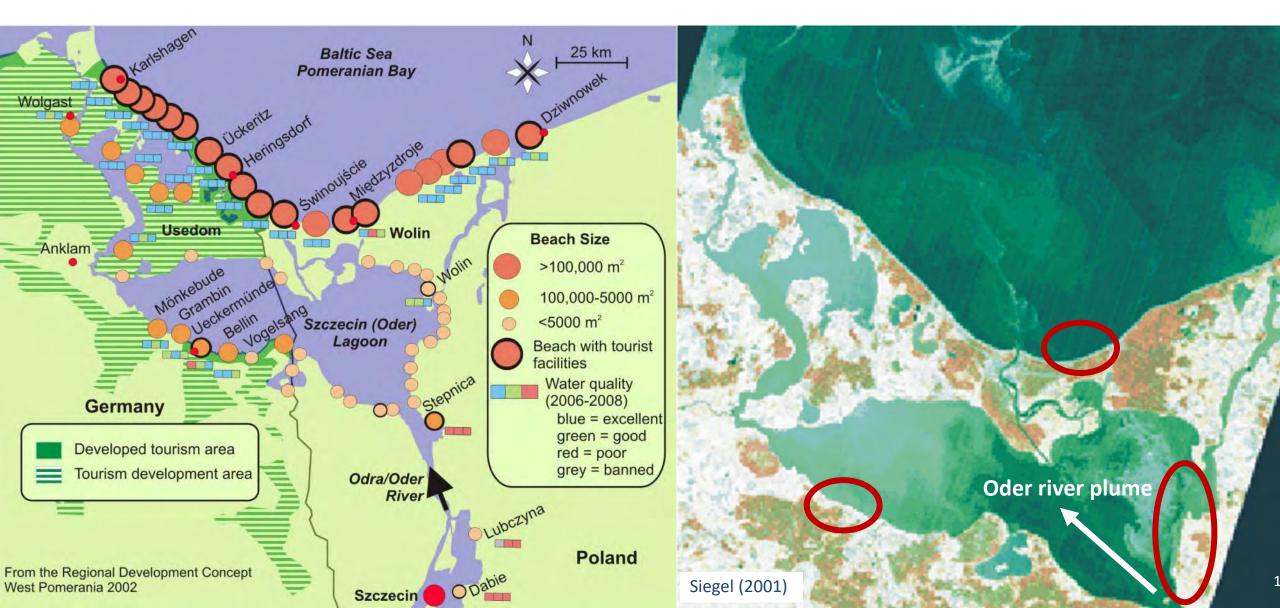
..no complementing parameters and sampling is less frequent (> monthly; ~ 4 per season).

あるという	Directive	Indicator (colony forming unit, CFU)	Excellent (G)	Good (I)	Insufficient
A NUMBER	76/160/EEC	Total coliforms (CFU/100 ml)	< 500	500 - 10 000	> 10 000
	76/160/EEC	Faecal coliforms (CFU/100 ml)	< 100	100 - 2 000	> 2 000
	2006/7/EC	<i>E. coli</i> (CFU/100 ml)	< 250	250 – 500	> 500
	2006/7/EC	Intestinal enterococci (CFU/100 ml)	< 100	100 - 200	> 200



2. Bathing water quality on Europe


- ~ 15,000 coastal & transitional bathing waters exist in the EU (363 in Germany).
- In the EU, 85.3 % show an excellent quality (EEA 2000).


2. Bathing Water Quality at the German Baltic coast – *E. coli*

2. Bathing Water Quality at the German Baltic coast – Enterococci

3. The Odra/Oder Lagoon: Tourism, beaches and bathing water quality

3. Ueckermünde:

Allocation and quantification of *E.coli* sources

Ueckermünde

01

00

02

03

Uecker river

Bathing & seagulls

Excellent (compliant with guide values) Good (compliant with mandatory values) Poor (Not compliant with mandatory values)

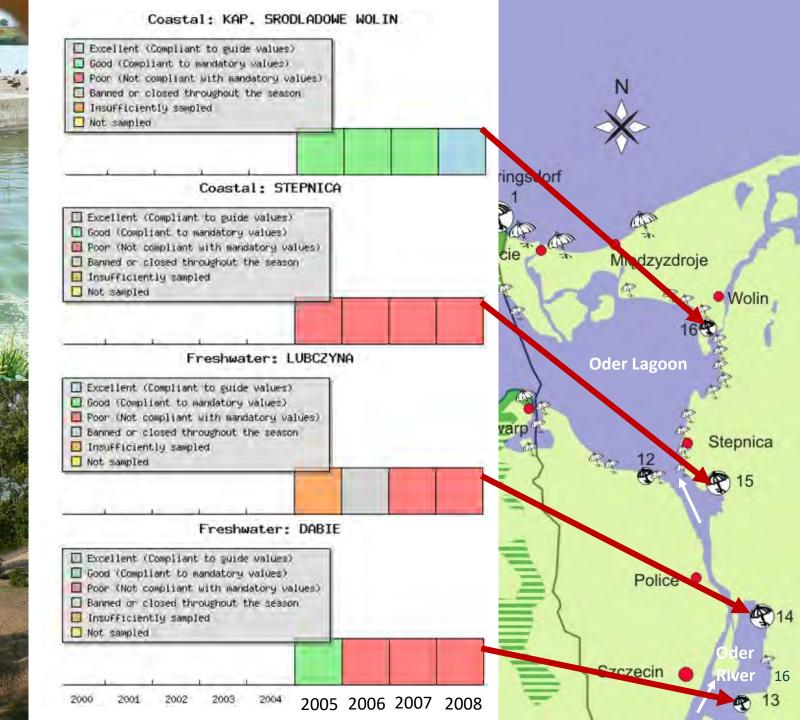
Year

04 05 06 07

08

Seagulls & fisheries

Cattle

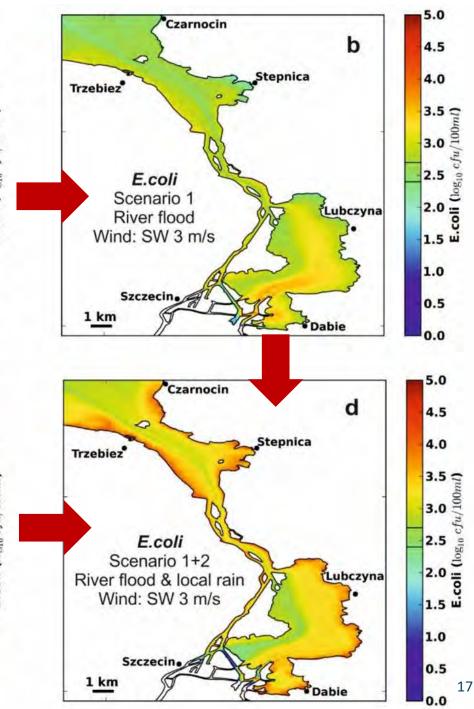

3. Ueckermünde: a) E.coli bacteria contamination map b) Wind speed [m/s] Wind frequency [%] N *E.coli* average 16 <4.5 pollution map >4.5 E w Schernewski et al. (2012): J. Coast. Conserv. Beac 5 km 0.03 30 300 3000 0.3 3 E.coli bacteria per 100 ml

- > The lagoon environment favors *E.coli* survival and even may enable growth.
- > The dominating (under all wind direction) near shore transport favors high E.coli concentrations at the beaches.
- > In Ueckermünde, high *E.coli* concentrations are usually linked to strong rain events with increased surface runoff.
- Frequently exceeded Enterococci thresholds indicate a long-distance transport and distant pollution sources (e.g. cormorant colonies, resting birds)

3. Oder river mouth: Bathing water quality

IL IL IL

-6 34

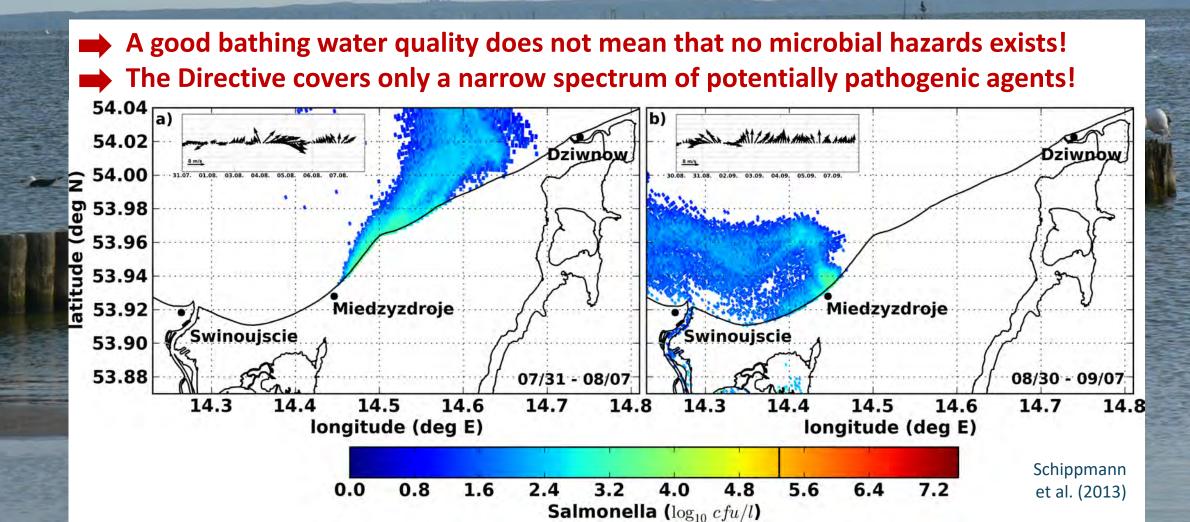


3. Oder river mouth:

E.coli pollution during river floods and local heavy rains

- Local emissions during heavy rains and river floods cause high E. coli concentrations and poor bathing water quality.
- Climate change may increase bathing water problems.

5.0 Czarnocin 4.5 а Stepnica 4.0 Trzebiez 3.5 (1m001/ 3.0 2.5 (logio , 0.2) E.coli Scenario 0 Lubczyna Present emissions Wind: SW 3 m/s 1.5 m 1.0 Szczecin. 0.5 1 km Dabie 0.0 5.0 Czarnocin C 4.5 0 Stepnica 4.0 Trzebiez 3.5 (*Jul*) 3.0 (*Jul*) 3.0 (*Jul*) 2.5 2.0 (login do . 2 E.coli Scenario 2 Lubczyna Local heavy rain Wind: SW 3 m/s 1.5 m 1.0 Szczecin. 0.5 1 km Dabie 0.0



Schippmann, Schernewski & Walczykiewicz (2014)

3. Baltic coast:

Salmonella pollution in the seaside resort Miedzyzdroje in August 2008.

- Salmonella caused a bathing prohibition for more than 4 weeks.
- Model simulations suggest a variable and wideranging transport but hardly an infection risk.

18

4. Bathing water quality: Unknown hazards e.g. *Vibrio vulnificus* bacteria

- Vibrio vulnificus is naturally present in marine and brackish waters.
- > It can enter the body through open wounds when swimming or via seafood.
- > When Vibrio vulnificus infections worsens into septicaemia, the mortality rate is high.
- > Vibrio cholerae, causing cholera, is a near relative.
- Very high Vibrio vulnificus concentrations have been observed at single German Baltic beaches.
- At the German Baltic coast, several persons died after an infection.
- In Germany, a regular monitoring takes place since 2004.

Vibrio vulnificus develops fast at temperatures above 20°C. It benefits from shallow waters and climate change.

4. Bathing water quality and climate change

Most important organisms which are a serious health risk for bathers in The Netherlands (Pond, 2005; Giessen et al., 2004) as well as changes in risk due to the anticipated climate change.

organism	disease*	oxygen	temp. (max.)	fresh/marine	dry/wet	vector	increased risk
Bacteria			1.12.1.1.1.1				
Escherichia coli 0157	abdominal cramping, bloody diarrhoea		< 5 19.3-41.0 (b)	fresh	wet	cattle	0
Legionella pneumophila	Legionnaires' disease	aerobic	25-35 (60)	fresh/brackish	wet	free-living	++
Leptospira icterohaemorrhagiae	leptospirosis (Weil's disease)	aerobic	28-30; < 42		wet	rats	++
Listeria monocytogenes	listeriose (meningoencephalitis)	anaer. + aer.	3-42		wet/dry		0
Mycobacterium avium	lung damage	low	up to 45		wet/dry	animals, humans	++
Salmonella spp.	(para)typhus	fac. anaer.	1992	fresh/marine	wet	animals, humans	0
Shigella spp.	dysentery	fac. anaer.	12-37 (20)		wet	man, gorilla	0
Vibrio cholerae	diarrhoea	fac. anaer.		fresh	wet/dry	free-living	++
Vibrio vulnificus	necrotising wound, infections, gastrenteri	tis fac. anaer.		marine	wet	free-living	++
Algae							_
Pfiesteria piscicida	skin irritation, nervus system problems	aerobic		marine	wet	free-living	++
Protozoa							-
Brucella spp.	brucellosis					cattle	0
Clostridium botulinum	paralysis	low	> 20	fresh/marine	wet	birds	+++
Cryptosporidium parvum	diamhoea			fresh/marine	wet-oocysts	mammals	++
Giardia duodenalis	dianhoea				wet-oocysts	animals, humans	++:
Microsporidia	infection digestive tract				wet-spores	animals, humans	0
Naegleria fowleri	meningoencephalitis		25-35	fresh warm	wet-sediment	free-living	
Viruses			the game he	n ofit from	alimata	ah a n a a	
Human adenovirus	upper respiratory tract	ny human-pat	thogens be	nent from	i climate	change.	++
coxsackievirus	agetro enteritie					++	
echovirus	gastro-ententis "New" human-pathogens may enter our waters, but will						++
hepatitis A	jaundice not be detected with the existing monitoring.					++	
hepatitis E	iaundice						++

* only the most important diseases

^{eases} 0 = no increased risk, ++ = slightly increased risk, +++ = increased risk Source: Roijackers & Lürling (2007) 20

5. Conclusions

- > The coastal bathing water quality in Europe is usually excellent.
- The European Bathing Water Directive uses *E.coli* and enterocci as quality indicators.
- They indicate faecal pollution but do not reflect all microbial hazards in waters.
- In the Baltic, climate change seems to increase the likelihood of summerly heavy rains and floods, which cause bathing water quality problems.
- Climate change with increasing water temperatures favors many 'new' and 'unknown' human-pathogenic organisms.

Thank you for your attention!

LEIBNIZ INSTITUTE FOR BALTIC SEA RESEARCH WARNEMÜNDE

Klaipeda University

Marine Research Institute

22

Prof. Dr. Gerald Schernewski gerald.schernewski@io-warnemuende.de Leibniz-Institute for Baltic Sea Research, Warnemünde, Germany; Klaipeda University, Lithuania

References

- Buer, A.-L., Gyraite, G., Wegener, P., Lange, X., Katarzyte, M., Hauk, G., Schernewski, G. (2018): Long term development of Bathing Water Quality at the German Baltic coast: spatial pattern, problems and model simulations. Marine Pollution Bulletin 135: 1055-1066 https://doi.org/10.1016/j.marpolbul.2018.08.048
- Kataržytė, M., Mėžinė, J., Vaičiūtė, D., Liaugaudaitė, S., Mukauskaitė, K., Umgiesser, G., Schernewski, G. (2018): Fecal contamination in shallow temperate estuarine lagoon: Source of the pollution and environmental factors. Marine Pollution Bulletin, 133: 762–772. DOI: 10.1016/j.marpolbul.2018.06.022
- Roijackers & Lürling (2007): Climate Change and Bathing Water Quality. https://edepot.wur.nl/28031
- Schernewski, G., E. Fischer, T. Huttula, G. Jost & M. Ras (2012): Simulation tools to support bathing water management: Escherichia coli bacteria in a Baltic lagoon. Journal Coastal Conservation 16,4: 473-488
- Schernewski, G., B. Schippmann, T. Walczykiewicz (2014): Coastal bathing water quality and climate change – a new information and simulation system for new challenges. Ocean & Coastal Management 101, A: 53–60
- Schippmann, B., G. Schernewski & U. Gräwe (2013): Escherichia coli pollution in a Baltic Sea lagoon: A model-based source and spatial risk assessment. International Journal of Hygiene and Environmental Health 216,4: 408-420
- Schippmann, B., G. Schernewski, U. Graewe, H. Burchard, T. Walczykiewicz (2013): A model tool for bathing water quality management: A case study on Salmonella occurrence at the southern Baltic coast. Ocean & Coastal Management 82: 71-84
- Tiwari, A., Oliver, D.M.; Bivins, A., Sherchan, S.P., Pitkänen, T. (2021): Bathing Water Quality Monitoring Practices in Europe and the United States. Int. J. Environ. Res. Public Health, 18, 5513
- World Health Organization (2021): Guidelines on recreational water quality. Volume
 1: coastal and fresh waters. Geneva

