Baltic Sea Eutrophication

Gerald Schernewski

Leibniz-Institute for Baltic Sea Research, Warnemünde, Germany Klaipeda University, Lithuania

Overview

- 1. The Baltic Sea special features
- 2. Eutrophication definition & consequences
- 3. Eutrophication problems in the Baltic Sea
- 4. Eutrophication causes
- 5. Eutrophication trends
- 6. Baltic Sea assessments & summary

Helcom: http://stateofthebalticsea.helcom.fi/in-brief/our-baltic-sea/

1. The Baltic Sea – special features

Area:	412 560 km ²
Volume:	21 631 km³
Water residence time:	25-30 years
South-north-spread:	ca. 1300 km
West-east-spread:	ca. 1000 km
Average depth:	52 m
Maximum depth:	460 m
Catchment:	1 734 000 km²
Population:	85 millions

It is bordered by 9 countries (Denmark, Sweden, Finland, Russia, Estonia, Latvia, Lithuania, Poland and Germany)

1. The Baltic Sea – special features

- > More than 250 rivers discharge 660 km³ water per year to the Baltic
- Periodically, North Sea water with high salinity enters and maintains gradients in the Baltic Sea

After Leppäranta & Myrberg (2008)

2. Eutrophication - definition & consequences

Eutrophication means the enrichment of aquatic systems with nutrients (nitrogen and phosphorus) and a subsequent increase in phytoplankton productivity

A simple conceptual model of eutrophication symptoms in the Baltic Sea:

LOADS

Nutrient enrichment:

- Increased concentrations of nitrogen and phosphorus
- Changes in nutrient ratios

2

- Increased phytoplankton primary production and biomass
- Changed phytoplankton community structure
- Harmful algal blooms
- Increased growth of short-lived nuisance macroalgae
- Increased sedimentation of organic matter

Secondary symptoms:

- Reduced water transparency
- Altered distribution of longlived submerged vegetation
- Altered benthic invertebrate communities
- Reduced bottom water
 oxygen concentrations
- Kills of bottom-dwelling fish and invertebrates

2. Definition & consequences

Eutrophication as a gradual process: Changes in food-web structure due to overfishing and eutrophication in the Baltic Sea.

HELCOM (2010): Balt. Sea Environ. Proc. No. 122, adapted from Watson and Pauly (2001)

3. Eutrophication in the Baltic Sea – blue algae blooms

Latvia

Poland

Source: ESA (2005)

Gotland

3. Eutrophication in the Baltic Sea – macroalgae

MINE ALL PLANTS AND AND

Schernewski (2019): Rügen

3. Eutrophication in the Baltic Sea – hypoxia

3. Eutrophication in the Baltic Sea – hypoxia

Seasonal hypoxia (≤ 2.1 ml l⁻¹) **Extent of** seasonal and Longer term hypoxia ($\leq 2.1 \text{ ml l}^{-1}$) longer-term Sampling Stations hypoxia averaged over 2001-2006. How does the seasonal development in the Baltic Sea looks like? Helcom (2009): Baltic Sea Environment 10 Proceedings No. 115B

3. Eutrophication – seasonal phytoplankton dynamic in the Baltic Sea

Chloropyll-a concentrations (mg/m³) near the sea surface (0-10m). Preindustrial nutrient loads and forcing of the year 1989.

02 JAN 1989

3. Eutropl

Chloropyll (mg/m³) n surface (0 industrial and forcin 1989.

What are conseque for nutrie nitrogen?

3. Eutrophication – seasonal nitrogen dynamic in the Baltic Sea

Dissolved inorganic nitrogen concentrations (mmol/m³) near the sea surface (0-10m). Preindustrial nutrient loads and forcing of the year 1989.

02 JAN 1989

3. Eutroph

Dissolved ir nitrogen co (mmol/m³) surface (0-1 industrial n and forcing 1989.

4. Eutrophication - causes

Estimated nitrogen surplus (Difference between inorganic and organic fertilizer application, atmospheric deposition and fixation compared to uptake by crops) for the year 2005 across Europe.

HELCOM (2011): Baltic Sea Environment Proceedings No. 128; based on EEA/JRC (2010)

4. Eutrophication - causes

Livestock units per agricultural area in 2017

3. Eutrophication causes

Nutrient retention (%)

4. Eut cau	rophica ses	tion -	Country
			Denmark
	-		Estonia
	Waterbor	Finland	
	phosphor	Germany	
WARNER	nitrogen t	Latvia	
1	(water flo	Lithuania	
	normalize	Poland	
Sec.	a-c		Russia
			Sweden
all and			Baltic Sh
			EU20
	1 N. P.		Otherst

Country	Flow (m ³ s ⁻¹)	Nitrogen (t)		Phosphorus (t)			
		Water- borne	Airborne	Total	Water- borne	Airborne	Total
Denmark	313	40,881	15,914	56,795	1,797		1,797
Estonia	452	25,362	3,180	28,542	667		667
Finland	2,326	62,255	9,722	71,977	2,973		2,973
Germany	128	24,145	38,327	62,472	596		596
Latvia	1,369	81,539	3,457	84,996	3,109		3,109
Lithuania	790	55,980	4,969	60,949	2,326		2,326
Poland	2,880	270,287	31,278	301,565	14,845		14,845
Russia	3,577	93,186	14,813	107,999	6,208		6,208
Sweden	5,863	104,702	14,207	118,909	3,649		3,649
Baltic Shipping			13,523	13,523	HELCOM (2015): Baltic		
EU20			39,987	39,987	Sea Environment Proceedings No. 145		
Other air			29,227	29,227			
Atmos. P sources						2,087	2,087
Total	17,698	758,337	218,604	976,941	36,168	2,087	38,255

5. Eutrophication - trends

Long-term time series of annual average total river flow, nitrogen, and phosphorus loads from land and atmosphere to the **whole Baltic Sea**.

Gustafsson et al. (2012) in HELCOM (2015): Baltic Sea Environment Proceedings No. 145

5. Eutrophication - trends

Gustafsson et al. (2012) in HELCOM (2015): Baltic Sea Environment Proceedings No. 145

Winter average surface nitrate and phosphate concentrations in Gotland Sea. Lines are modelled and red dots are averages made from observations.

6. Eutrophication - assessments

- Primary production (algae growth) in the open Baltic Sea is limited by nitrogen.
- Blue algae are able to fix atmospheric nitrogen and can overcome nitrogen shortages in the water.
- Therefore, a positive effect of riverine N-load reductions on the open Baltic Sea is questionable.
- As a consequence, eutrophication management has a stronger focus on phosphorus reductions.
- For both nutrients, maximum allowable inputs (MAI) that allow a good environmental status in the sea are defined.
- The state of eutrophication is assessed based on the eutrophication ratio (ER) which includes dissolved inorganic nitrogen and – phosphorus, chlorophyll-a concentrations, Secchi-depth and oxygen debt.

6. Eutrophication - assessments

Temporal development of waterborne total nitrogen and phosphorus inputs to the Baltic Sea from 1900 to 2014

HELCOM (2018): Baltic Sea Environment Proceedings 155; Gustafsson et al. (2012); Savchuk et al. (2012) 24

6. Eutrophication - assessments

Integrated assessment of eutrophication status (eutrophication ratio, ER) for the period 1901–2012. Dashed lines represent boundaries for eutrophication status classes. The solid line is the 5-year average.

6. Eutrophication assessments

Integrated classification of eutrophication status in the Baltic Sea

HELCOM, (2010): Balt. Sea Environ. Proc. No. 122

26

Summary

- The relatively large Baltic catchment and the humid climate favor high riverine discharge and high nutrient loads
- Intensive agriculture is a major cause for high nutrient loads and eutrophication
- The relative shallowness makes the Baltic Sea sensitive to eutrophication
- The state of eutrophication is mostly poor or moderate
- Nutrient loads are declining but the long water residence time in the sea does not allow a fast recovery

Thank you for your attention!

Universität Rostock

Germany; Klaipeda University, Lithuania

Kla Un

Klaipeda University

Marine Research Institute

28