

The Baltic Sea - Microplastic

Gerald Schernewski

Leibniz-Institute for Baltic Sea Research, Warnemünde, Germany Klaipeda University, Lithuania

Overview

- 1. Background
- 2. Plastic in the Baltic
- 3. Microplastic a challenge
- 4. Microplastic behaviour in the Baltic Sea
- 5. Microplastic measures to reduce emissions
- 6. Conclusions

1. Plastic in the sea

- It is a global problem,
- covers a wide spectrum of plastic types, shapes and size-classes and
- most plastic finally ends-up at coasts.

1. The EU Marine Strategy Framework Directive

Objective: A good status of the marine environment

Descriptor 10: Properties and quantities of marine litter do not cause harm to the coastal and marine environment.

10.1. Characteristics of litter in the marine and coastal environment

- Trends of litter washed ashore...
- > Trends of litter in the water column and on the sea- floor...
- > Trends of micro-particles (in particular micro-plastics)....
- 10.2. Impacts of litter on marine life
 - > Trends of litter ingested by marine animals

Baltic Sea Action Plan

Programme of measures for a healthy marine Baltic Sea environment (HELCOM - Helsinki Commission)

Definitions

Microplastic: <5 mm

Mesoplastic: 5 – 25 mm

Macroplastic: >25 mm

http://marinedebris.noaa.gov/info/plastic.html

2. Macroplastic in the Baltic – state of art

- > The majority of marine macrolitter is plastics (~80%).
- Local emissions (coastal cities, seaside resorts, tourism hot-spots and events) are most important in the Baltic Sea.
- Plastic emissions from ships to the open sea reach coasts within days.
- Plastics is partly deposited in deeper, sheltered areas (shipping channels). This is true for floating plastic as well, as soon as it is overgrown with organic matter.
- Concentrations of macrolitter at Baltic beaches are spatially and temporally highly variable.
- With a median below 100 pieces/100m, Baltic beaches show a much lower pollution compared to North Sea/Atlantic beaches (about 500 pieces/100m).

2. Macroplastic in the Baltic – lessons learnt

- The closed Baltic Sea, lower emissions (e.g. fisheries) and beach cleaning activities seem to be major explanations for relatively low concentrations.
- The common 100 m beach monitoring is not well suitable for the Baltic Sea (lack of remote beaches, disturbance due to cleanings, extreme spatio-temporal variability of results, very local sources).
- Macrolitter at beaches is only a poor indicator for Baltic Sea litter pollution (according Marine Strategy Framework Directive).
- Mesolitter monitoring methods (e.g. Rake method) are a suitable complementation to overcome several weaknesses of the OSPAR method (Haseler et al. 2018, 2019, 2020).

But what about microplastics?

2. Microplastic in the Baltic – state of art

Some data exists for microplastic concentrations in the sea, in sediments, at beaches and in animals...but:

- The observed concentrations depend on the applied sampling, preparation and analytical methods.
- Costs and effort to study microplastic in the field are high and this limits the gain of knowledge.
- As a consequence, the data is rare, varies within wide ranges, shows an extreme spatial variability and can hardly be regarded as reliable.

Could macro- or mesoplastic items serve as indicator for microplastics?

2. Are larger items indicators for microplastics?

No, larger plastics cannot serve as reliable indicator for microplastic pollution because of different sources and pathways.

~ 5 m²

Cleaning bristles

Lolly sticks & cotton buds

However, since the sampling of larger items is easy, it can provide insights into spatial pollution pattern.

Schernewski, Radtke, Robbe, Haseler, Hauk, Meyer, Piehl, Riedel, Labrenz (2021): Environmental Management

Plastics >25 mm

10 m²

Plastics <25 mm

Cigarette butts

3. Microplastic – a challenge Questions

How can we get an insight into

- the state of the microplastic pollution in the Baltic Sea,
- spatial and temporal microplastic concentration pattern in the sea, sediments and at coasts as well as
- transport and behaviour in the marine environment?

Photo: H. Schulz-Vogt

Water-bound emissions from urban areas are dominating!

3. Microplastic – a challenge Approach

- Compilation of data on waste water amounts and treatment technologies for the entire Baltic Region.
- Calculation of annual microplastic emissions for every urban pathway and location based on literature data.
- Calculation of riverine and direct microplastic emissions to the Baltic Sea.
- Model simulations on microplastics transport, behavior and deposition in the Baltic Sea.
- Comparisons of results with field data.

Emissions to the Baltic Sea basin:	Microplastics	
urban sources	20-500 µm siz	e-class,
Mentowater	particles/year	
vvastewater		
	4 75 40	050/
(0000195).	1.7E+13	25%
Not connected		
wastewater:	8.4E+12	13%
Sewer overflow		
(combined &		
separated systems):	4.2E+13	62%
Sum:	6.7E+13	100%
	(67 trillion	particles)
River	Particles/ye	ear
1 Kokemäenjoki (Fir	n.) 3.1E+11	1.9%
2 Umeläven (Swede	en) 6.8E+10	0.4%
3 Dalälven (Sweder	i) 1.4E+11	0.8%
4 Odra (Poland)	1.0E+12	6.0%
5 Vistula (Poland)	1.0E+12	6.2%
6 Pregolya (Russia)	7.8E+10	0.5%
7 Nemunas (Lit./Rus	s.) 6.1E+11	3.6%
8 Daugava (Latvia)	2.2E+11	1.3%
9 Narva (Est./Rus.)	1.3E+11	0.8%
10 Neva (Russia)	3.2E+11	1.9%

13

Schernewski, Radtke, Hauk, Baresel, Olshammar, Oberbeckmann (2021)

3. Microplastics emissions to the Baltic Sea

- Large rivers and coastal cities are major emission pathways;
- Retention of microplastics in rivers is largely unknown

5,000,000,000,000
(5 trillion particles)

Schernewski, Radtke, Hauk, Baresel, Olshammar, Oberbeckmann (2021)

Photo: S. Piehl

4. Microplastics in the sea

- Microplastic concentrations in the sea are relatively low.
- No long-term accumulation in the sea is visible.
- Concentrations show strong spatial gradients and high temporal variability.
- Microplastic sampling in the sea seems not cost-effective.

Average particle concentrations per m³ in the upper 2 m of the water

column resulting from urban water-bound microplastics emissions, based on simulations with a 3D hydrodynamic model.

4. Microplastics Vertical distribution

- Floating and sinking microplastics concentrations (densities 0.9-1.4 g/cm³) are highest near the sea surface.
- Differences in shape and size play only a minor role.
- > Biofilms may play a role.

Schernewski, Radtke, Hauk, Baresel, Olshammar, Osinski, Oberbeckmann (2020) 19

4. Microplastics: Residence time in the Baltic Sea water body

Residence time of Polyethylen (PE)/Polypropylen (PP) and Polyethylenterephthalat (PET) mirco-plastic particles in the Baltic Sea based on simulations with a 3D hydrodynamic model. PE/PP represents floating and PET sinking plastic. The emissions cover all three urban sources and the 20-500 µm size fraction.

The average residence time in the Baltic Sea is only about 2 weeks (independently of the plastic type, floating or sinking).

Schernewski, Radtke, Hauk, Baresel, Olshammar, Osinski, Oberbeckmann (2020) 20

4. Microplastics: Sediments

- > Microplastics concentrations at sediment surfaces are relatively low.
- > No permanent accumulation takes place on sandy near coast sediments.
- > Storms with wave induced resuspension and transport to the coast cause a sediment, cleaning'.

4. Microplastics: Beaches

- > Coasts are major sinks for microplastic.
- Accumulation at coasts takes place close to the emission points.
- Monitoring should focus on the floodsam/tidal zone of beaches.

r) Photo: H. Schulz-Vogt 22

5. Measures to reduce emissions: Improved sewage treatment

> Wastewater treatment plants (WWTPs) are efficient traps for microplastics.

In the Baltic Sea region, improved treatment (beyond 3 steps) would have only limited effects on plastic load reduction and seems not-cost effective.

5. Measures to reduce emissions: Reduction of stormwater and sewer overflow

In the Baltic stormwater and sewer overflow seem to be the major microplastic pathways. Recommendable mitgation measures are:

Separated sewer systems & stormwater retention systems!

6. Conclusions

- Mitigation and load reduction measures should address stormwater and sewer overflow with focus on coastal urban areas.
- Further research is required on retention of microplastics in rivers (and estuaries).
- Microplastic monitoring should focus on the floodsam/tidal zone of beaches, especially in close proximity to emission sources.

Thank you for your attention!

Supported by projects BMBf-MicroCatch, Bonus MicroPoll, Eranet-Rus BalticLitter & TouMaLi.

Klaipeda University

Marine Research Institute

Prof. Dr. Gerald Schernewski gerald.schernewski@io-warnemuende.de Leibniz-Institute for Baltic Sea Research, Warnemünde, Germany; Klaipeda University, Lithuania

Related recent peer-review articles

- Haseler et al. (2019): Cost-effective monitoring of large micro- and mesolitter in tidal and flood accumulation zones at south-western Baltic Sea beaches. Marine Pollution Bulletin 149
- Piehl et al. (2021): Combined Approaches to Predict Microplastic Emissions Within an Urbanized Estuary (Warnow, Southwestern Baltic Sea). Front. Environ. Sci., 616765
- Schernewski et al. (2020): Transport and Behavior of Microplastics Emissions From Urban Sources in the Baltic Sea. Front. Environ. Sci., 8: 579361
- Schernewski et al. (2021): Urban Microplastics Emissions: Effectiveness of Retention Measures and Consequences for the Baltic Sea. Front. Mar. Sci., 8 587500
- Schernewski et al. (2021): Emission, transport and deposition of visible plastics in an estuary and the Baltic Sea – a monitoring and modelling approach. Environmental Management